
Amperes Law.

Amperes law gives another method to calculate the magnetic field due to a given current distribution.

Line integral of the magnetic field B


around any closed curve is equal to 0 times the net current i

threading through the area enclosed by the curve

i.e. )( 23100 iiiildB   
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Also using HB 0 (where H = magnetising field)

idlH  00 .   idlH  .

Note :  Total current crossing the above area is )( 231 iii  . Any current outside the area is not included 

in net current. (Outward  +ve, Inward  – ve)

 When the direction of current is away from the observer then the direction of closed path is 
clockwise and when the direction of current is towards the observer then the direction of closed 
path is anticlockwise.

Application of Amperes law.

(1) Magnetic field due to a cylindrical wire 

(i) Outside the cylinder 
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(ii) Inside the cylinder : Magnetic field inside the hollow cylinder is zero.
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Solid cylinder Inside the thick portion of hollow cylinder

Current enclosed by loop (i) is lesser then the total current 
(i)

Current density is uniform i.e. J = J 
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Current enclosed by loop (i) is lesser then the total current 
(i)
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)(

)('
'

2
1

2
2

2
1

2

RR

Rr
i

A

A
ii






Hence at point Q     '. 0 ildB  
)(

)(
2

2
1

2
2

2
1

2

0
RR

Rr
irB




 


)(

)(
.

2 2
1

2
2

2
1

2
0

RR

Rr

r

i
B








.  If r = R1 (inner surface)  B = 0

If r = R2 (outer surface)
2

0

2 R

i
B




 (max.)

Note :  For all cylindrical current distributions 

Baxis = 0 (min.), Bsurface = max (distance r always from axis of cylinder), Bout   1/r.

(2) Magnetic field due to an infinite sheet carrying current : The figure shows an infinite sheet of 
current with linear current density j (A/m). Due to symmetry the field line pattern above and below the sheet is 
uniform. Consider a square loop of side l as shown in the figure.
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The current enclosed by the loop is i = jl

Therefore, according to Ampere’s law )(2 0 jlBl  or 
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(3) Solenoid 

A cylinderical coil of many tightly wound turns of insulated wire with generally diameter of the coil 
smaller than its length is called a solenoid. 
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One end of the solenoid behaves like the north pole and opposite end behaves like the south pole. As the 
length of the solenoid increases, the interior field becomes more uniform and the external field becomes 
weaker.

A magnetic field is produced around and within the solenoid. The magnetic field within the solenoid is 
uniform and parallel to the axis of solenoid. 

(i) Finite length solenoid : If N = total number of turns,

l = length of the solenoid

n = number of turns per unit length 
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N
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Magnetic field inside the solenoid at point P is given by  ]sin)[sin2(
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(ii) Infinite length solenoid : If the solenoid is of infinite length and the point is well inside the 
solenoid i.e. )2/(  . 

So niμBin 0

(ii) If the solenoid is of infinite length and the point is near one end i.e. 0 and )2/( 
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Note :  Magnetic field outside the solenoid is zero. 
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(4) Toroid : A toroid can be considered as a ring shaped closed solenoid. Hence it is like an endless 
cylindrical solenoid. 

Consider a toroid having n turns per unit length 

Let i be the current flowing through the toroid (figure). The magnetic lines of force mainly remain in the 
core of toroid and are in the form of concentric circles. Consider such a circle of mean radius r. The circular 

closed path surrounds N loops of wire, each of which carries a current i therefore from   netildB 0. 
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For any point inside the empty space surrounded by toroid and outside the toroid, magnetic field B is zero 
because the net current enclosed in these spaces is zero.
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Concepts

 The line integral of magnetising field )(H for any closed path called magnetomotive force (MMF). It's S.I. unit is amp.

 Ratio of dimension of e.m.f. to MMF is equal to the dimension of resistance.

 Biot-Savart law is valid for asymmetrical current distributions while Ampere's law is valid for symmetrical current 
distributions.

 Biot-Savart law is based only on the principle of magnetism while Ampere's laws is based on the principle of 
electromagnetism.

Example: 22 A long solenoid has 200 turns per cm and carries a current of 2.5 A. The magnetic field at its centre is 

[0 = 4  10–7 Wb/m2] [MP PET 2000]

(a) 3.14  10–2 Wb/m2 (b) 6.28  10–2 Wb/m2 (c) 9.42  10–2 Wb/m2 (d) 12.56  10–2 Wb/m2
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Example: 23 A long solenoid is formed by winding 20 turns/cm. The current necessary to produce a magnetic field of 
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(a) 8.0 A (b) 4.0 A (c) 2.0 A (d) 1.0 A

Solution : (a) niB 0 ; where 
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Example: 24 Two solenoids having lengths L and 2L and the number of loops N and 4N, both have the same current, 
then the ratio of the magnetic field will be [CPMT 1994]

(a) 2:1 (b) 1:2 (c) 4:1 (d) 1:4
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Example: 25 The average radius of a toroid made on a ring of non-magnetic material is 0.1 m and it has 500 turns. If it
carries 0.5 ampere current, then the magnetic field produced along its circular axis inside the toroid will 
be

(a) 21025  Tesla (b) 2105  Tesla (c) 41025  Tesla (d) 4105  Tesla
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Example: 26 For the solenoid shown in figure. The magnetic field at point P is
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Solution : (a) )sin(sin2.
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Example: 27 Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius 'R' and outer 
radius '2R', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at 

point 'P' at a distance 
2
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from the axis of the cylinder will be 
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A winding wire which is used to frame a solenoid can bear a maximum 10 A current. If length of 
solenoid is 80cm and it's cross sectional radius is 3 cm then required length of winding wire is 

)2.0( TB 

(a) m2102.1  (b) m2108.4  (c) m3104.2  (d) m3106 
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Tricky example: 3


