EXERCISES 1.3

Functions

In Exercises 1-6, find the domain and range of each function.

1. $f(x)=1+x^{2}$
2. $f(x)=1-\sqrt{x}$
3. $F(t)=\frac{1}{\sqrt{t}}$
4. $F(t)=\frac{1}{1+\sqrt{t}}$
5. $g(z)=\sqrt{4-z^{2}}$
6. $g(z)=\frac{1}{\sqrt{4-z^{2}}}$

In Exercises 7 and 8, which of the graphs are graphs of functions of x, and which are not? Give reasons for your answers.
7. a.

b.

8. a.

b.

9. Consider the function $y=\sqrt{(1 / x)-1}$.
a. Can x be negative?
b. Can $x=0$?
c. Can x be greater than 1 ?
d. What is the domain of the function?
10. Consider the function $y=\sqrt{2-\sqrt{x}}$.
a. Can x be negative?
b. Can \sqrt{x} be greater than 2 ?
c. What is the domain of the function?

Finding Formulas for Functions

11. Express the area and perimeter of an equilateral triangle as a function of the triangle's side length x.
12. Express the side length of a square as a function of the length d of the square's diagonal. Then express the area as a function of the diagonal length.
13. Express the edge length of a cube as a function of the cube's diagonal length d. Then express the surface area and volume of the cube as a function of the diagonal length.
14. A point P in the first quadrant lies on the graph of the function $f(x)=\sqrt{x}$. Express the coordinates of P as functions of the slope of the line joining P to the origin.

Functions and Graphs

Find the domain and graph the functions in Exercises 15-20.
15. $f(x)=5-2 x$
16. $f(x)=1-2 x-x^{2}$
17. $g(x)=\sqrt{|x|}$
18. $g(x)=\sqrt{-x}$
19. $F(t)=t /|t|$
20. $G(t)=1 /|t|$
21. Graph the following equations and explain why they are not graphs of functions of x.
a. $|y|=x$
b. $y^{2}=x^{2}$
22. Graph the following equations and explain why they are not graphs of functions of x.
a. $|x|+|y|=1$
b. $|x+y|=1$

Piecewise-Defined Functions

Graph the functions in Exercises 23-26.
23. $f(x)= \begin{cases}x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{cases}$
24. $g(x)= \begin{cases}1-x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{cases}$
25. $F(x)= \begin{cases}3-x, & x \leq 1 \\ 2 x, & x>1\end{cases}$
26. $G(x)= \begin{cases}1 / x, & x<0 \\ x, & 0 \leq x\end{cases}$
27. Find a formula for each function graphed.
a.

b.

28. a.

b.

29. a.

b.

30. a.

b.

31. a. Graph the functions $f(x)=x / 2$ and $g(x)=1+(4 / x)$ together to identify the values of x for which

$$
\frac{x}{2}>1+\frac{4}{x}
$$

b. Confirm your findings in part (a) algebraically.
32. a. Graph the functions $f(x)=3 /(x-1)$ and $g(x)=2 /(x+1)$ together to identify the values of x for which

$$
\frac{3}{x-1}<\frac{2}{x+1}
$$

b. Confirm your findings in part (a) algebraically.

The Greatest and Least Integer Functions

33. For what values of x is
a. $\lfloor x\rfloor=0$?
b. $\lceil x\rceil=0$?
34. What real numbers x satisfy the equation $\lfloor x\rfloor=\lceil x\rceil$?
35. Does $\lceil-x\rceil=-\lfloor x\rfloor$ for all real x ? Give reasons for your answer.
36. Graph the function

$$
f(x)= \begin{cases}\lfloor x\rfloor, & x \geq 0 \\ \lceil x\rceil, & x<0\end{cases}
$$

Why is $f(x)$ called the integer part of x ?

Theory and Examples

37. A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 14 in . by 22 in . by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume V of the box as a function of x.

38. The figure shown here shows a rectangle inscribed in an isosceles right triangle whose hypotenuse is 2 units long.
a. Express the y-coordinate of P in terms of x. (You might start by writing an equation for the line $A B$.)
b. Express the area of the rectangle in terms of x.

39. A cone problem Begin with a circular piece of paper with a 4 in. radius as shown in part (a). Cut out a sector with an arc length of x. Join the two edges of the remaining portion to form a cone with radius r and height h, as shown in part (b).

a. Explain why the circumference of the base of the cone is $8 \pi-x$.
b. Express the radius r as a function of x.
c. Express the height h as a function of x.
d. Express the volume V of the cone as a function of x.
40. Industrial costs Dayton Power and Light, Inc., has a power plant on the Miami River where the river is 800 ft wide. To lay a new cable from the plant to a location in the city 2 mi downstream on the opposite side costs $\$ 180$ per foot across the river and $\$ 100$ per foot along the land.

a. Suppose that the cable goes from the plant to a point Q on the opposite side that is $x \mathrm{ft}$ from the point P directly opposite the
plant. Write a function $C(x)$ that gives the cost of laying the cable in terms of the distance x.
b. Generate a table of values to determine if the least expensive location for point Q is less than 2000 ft or greater than 2000 ft from point P.
41. For a curve to be symmetric about the x-axis, the point (x, y) must lie on the curve if and only if the point $(x,-y)$ lies on the curve. Explain why a curve that is symmetric about the x-axis is not the graph of a function, unless the function is $y=0$.
42. A magic trick You may have heard of a magic trick that goes like this: Take any number. Add 5. Double the result. Subtract 6. Divide by 2. Subtract 2 . Now tell me your answer, and I'll tell you what you started with. Pick a number and try it.

You can see what is going on if you let x be your original number and follow the steps to make a formula $f(x)$ for the number you end up with.

