1.5 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where the denominator is zero) to produce new functions. If f and g are functions, then for every x that belongs to the domains of both f and g (that is, for $x \in D(f) \cap D(g)$), we define functions $f+g, f-g$, and $f g$ by the formulas

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) . \\
(f-g)(x) & =f(x)-g(x) . \\
(f g)(x) & =f(x) g(x) .
\end{aligned}
$$

Notice that the + sign on the left-hand side of the first equation represents the operation of addition of functions, whereas the + on the right-hand side of the equation means addition of the real numbers $f(x)$ and $g(x)$.

At any point of $D(f) \cap D(g)$ at which $g(x) \neq 0$, we can also define the function f / g by the formula

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad(\text { where } g(x) \neq 0)
$$

Functions can also be multiplied by constants: If c is a real number, then the function $c f$ is defined for all x in the domain of f by

$$
(c f)(x)=c f(x)
$$

EXAMPLE 1 Combining Functions Algebraically

The functions defined by the formulas

$$
f(x)=\sqrt{x} \quad \text { and } \quad g(x)=\sqrt{1-x}
$$

have domains $D(f)=[0, \infty)$ and $D(g)=(-\infty, 1]$. The points common to these domains are the points

$$
[0, \infty) \cap(-\infty, 1]=[0,1]
$$

The following table summarizes the formulas and domains for the various algebraic combinations of the two functions. We also write $f \cdot g$ for the product function $f g$.

Function	Formula	Domain
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$	$[0,1]=D(f) \cap D(g)$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$	$[0,1]$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$	$[0,1]$
$f \cdot g$	$(f \cdot g)(x)=f(x) g(x)=\sqrt{x(1-x)}$	$[0,1]$
f / g	$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$	$[0,1)(x=1$ excluded $)$
g / f	$\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}$	$(0,1](x=0$ excluded $)$

The graph of the function $f+g$ is obtained from the graphs of f and g by adding the corresponding y-coordinates $f(x)$ and $g(x)$ at each point $x \in D(f) \cap D(g)$, as in Figure 1.50. The graphs of $f+g$ and $f \cdot g$ from Example 1 are shown in Figure 1.51.

FIGURE 1.50 Graphical addition of two functions.

FIGURE 1.51 The domain of the function $f+g$ is the intersection of the domains of f and g, the interval $[0,1]$ on the x-axis where these domains overlap. This interval is also the domain of the function $f \cdot g$ (Example 1).

Composite Functions

Composition is another method for combining functions.

DEFINITION Composition of Functions

If f and g are functions, the composite function $f \circ g$ (" f composed with $g ")$ is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which $g(x)$ lies in the domain of f.

The definition says that $f \circ g$ can be formed when the range of g lies in the domain of f. To find $(f \circ g)(x)$, first find $g(x)$ and second find $f(g(x))$. Figure 1.52 pictures $f \circ g$ as a machine diagram and Figure 1.53 shows the composite as an arrow diagram.
 domain of the other. The composite is denoted by $f \circ g$.

EXAMPLE 2 Viewing a Function as a Composite

The function $y=\sqrt{1-x^{2}}$ can be thought of as first calculating $1-x^{2}$ and then taking the square root of the result. The function y is the composite of the function $g(x)=1-x^{2}$ and the function $f(x)=\sqrt{x}$. Notice that $1-x^{2}$ cannot be negative. The domain of the composite is $[-1,1]$.

To evaluate the composite function $g \circ f$ (when defined), we reverse the order, finding $f(x)$ first and then $g(f(x))$. The domain of $g \circ f$ is the set of numbers x in the domain of f such that $f(x)$ lies in the domain of g.

The functions $f \circ g$ and $g \circ f$ are usually quite different.
EXAMPLE 3 Finding Formulas for Composites
If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$.

Solution

Composite
(a) $(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1} \quad[-1, \infty)$
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$ $[0, \infty)$
(c) $(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4} \quad[0, \infty)$
(d) $(g \circ g)(x)=g(g(x))=g(x)+1=(x+1)+1=x+2 \quad(-\infty, \infty)$

To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that $g(x)=x+1$ is defined for all real x but belongs to the domain of f only if $x+1 \geq 0$, that is to say, when $x \geq-1$.

Notice that if $f(x)=x^{2}$ and $g(x)=\sqrt{x}$, then $(f \circ g)(x)=(\sqrt{x})^{2}=x$. However, the domain of $f \circ g$ is $[0, \infty)$, $\operatorname{not}(-\infty, \infty)$.

Shifting a Graph of a Function

To shift the graph of a function $y=f(x)$ straight up, add a positive constant to the righthand side of the formula $y=f(x)$.

To shift the graph of a function $y=f(x)$ straight down, add a negative constant to the right-hand side of the formula $y=f(x)$.

To shift the graph of $y=f(x)$ to the left, add a positive constant to x. To shift the graph of $y=f(x)$ to the right, add a negative constant to x.

Shift Formulas

Vertical Shifts

$y=f(x)+k \quad$ Shifts the graph of f up k units if $k>0$
Shifts it down $|k|$ units if $k<0$

Horizontal Shifts

$y=f(x+h) \quad$ Shifts the graph of f left h units if $h>0$
Shifts it right $|h|$ units if $h<0$

FIGURE 1.54 To shift the graph of $f(x)=x^{2}$ up (or down), we add positive (or negative) constants to the formula for f (Example 4a and b).

EXAMPLE 4 Shifting a Graph

(a) Adding 1 to the right-hand side of the formula $y=x^{2}$ to get $y=x^{2}+1$ shifts the graph up 1 unit (Figure 1.54).
(b) Adding -2 to the right-hand side of the formula $y=x^{2}$ to get $y=x^{2}-2$ shifts the graph down 2 units (Figure 1.54).
(c) Adding 3 to x in $y=x^{2}$ to get $y=(x+3)^{2}$ shifts the graph 3 units to the left (Figure 1.55).
(d) Adding -2 to x in $y=|x|$, and then adding -1 to the result, gives $y=|x-2|-1$ and shifts the graph 2 units to the right and 1 unit down (Figure 1.56).

FIGURE 1.55 To shift the graph of $y=x^{2}$ to the left, we add a positive constant to x. To shift the graph to the right, we add a negative constant to x (Example 4c).

FIGURE 1.56 Shifting the graph of $y=|x| 2$ units to the right and 1 unit down (Example 4d).

Scaling and Reflecting a Graph of a Function

To scale the graph of a function $y=f(x)$ is to stretch or compress it, vertically or horizontally. This is accomplished by multiplying the function f, or the independent variable x, by an appropriate constant c. Reflections across the coordinate axes are special cases where $c=-1$.

Vertical and Horizontal Scaling and Reflecting Formulas

For $c>1$,
$y=c f(x) \quad$ Stretches the graph of f vertically by a factor of c.
$y=\frac{1}{c} f(x) \quad$ Compresses the graph of f vertically by a factor of c.
$y=f(c x) \quad$ Compresses the graph of f horizontally by a factor of c.
$y=f(x / c) \quad$ Stretches the graph of f horizontally by a factor of c.
For $c=-1$,
$y=-f(x) \quad$ Reflects the graph of f across the x-axis.
$y=f(-x) \quad$ Reflects the graph of f across the y-axis.

FIGURE 1.57 Vertically stretching and compressing the graph $y=\sqrt{x}$ by a factor of 3 (Example 5a).

EXAMPLE $5 \quad$ Scaling and Reflecting a Graph

(a) Vertical: Multiplying the right-hand side of $y=\sqrt{x}$ by 3 to get $y=3 \sqrt{x}$ stretches the graph vertically by a factor of 3 , whereas multiplying by $1 / 3$ compresses the graph by a factor of 3 (Figure 1.57).
(b) Horizontal: The graph of $y=\sqrt{3 x}$ is a horizontal compression of the graph of $y=\sqrt{x}$ by a factor of 3 , and $y=\sqrt{x / 3}$ is a horizontal stretching by a factor of 3 (Figure 1.58). Note that $y=\sqrt{3 x}=\sqrt{3} \sqrt{x}$ so a horizontal compression may correspond to a vertical stretching by a different scaling factor. Likewise, a horizontal stretching may correspond to a vertical compression by a different scaling factor.
(c) Reflection: The graph of $y=-\sqrt{x}$ is a reflection of $y=\sqrt{x}$ across the x-axis, and $y=\sqrt{-x}$ is a reflection across the y-axis (Figure 1.59).

FIGURE 1.58 Horizontally stretching and compressing the graph $y=\sqrt{x}$ by a factor of 3 (Example 5b).

FIGURE 1.59 Reflections of the graph $y=\sqrt{x}$ across the coordinate axes (Example 5c).

EXAMPLE 6 Combining Scalings and Reflections

Given the function $f(x)=x^{4}-4 x^{3}+10$ (Figure 1.60a), find formulas to
(a) compress the graph horizontally by a factor of 2 followed by a reflection across the y-axis (Figure 1.60b).
(b) compress the graph vertically by a factor of 2 followed by a reflection across the x-axis (Figure 1.60c).

FIGURE 1.60 (a) The original graph of f. (b) The horizontal compression of $y=f(x)$ in part (a) by a factor of 2 , followed by a reflection across the y-axis. (c) The vertical compression of $y=f(x)$ in part (a) by a factor of 2, followed by a reflection across the x-axis (Example 6).

Solution

(a) The formula is obtained by substituting $-2 x$ for x in the right-hand side of the equation for f

$$
\begin{aligned}
y & =f(-2 x)=(-2 x)^{4}-4(-2 x)^{3}+10 \\
& =16 x^{4}+32 x^{3}+10
\end{aligned}
$$

(b) The formula is

$$
y=-\frac{1}{2} f(x)=-\frac{1}{2} x^{4}+2 x^{3}-5
$$

Ellipses

Substituting $c x$ for x in the standard equation for a circle of radius r centered at the origin gives

$$
\begin{equation*}
c^{2} x^{2}+y^{2}=r^{2} . \tag{1}
\end{equation*}
$$

If $0<c<1$, the graph of Equation (1) horizontally stretches the circle; if $c>1$ the circle is compressed horizontally. In either case, the graph of Equation (1) is an ellipse (Figure 1.61). Notice in Figure 1.61 that the y-intercepts of all three graphs are always $-r$ and r. In Figure 1.61b, the line segment joining the points $(\pm r / c, 0)$ is called the major axis of the ellipse; the minor axis is the line segment joining $(0, \pm r)$. The axes of the ellipse are reversed in Figure 1.61c: the major axis is the line segment joining the points $(0, \pm r)$ and the minor axis is the line segment joining the points $(\pm r / c, 0)$. In both cases, the major axis is the line segment having the longer length.

FIGURE 1.61 Horizontal stretchings or compressions of a circle produce graphs of ellipses.

If we divide both sides of Equation (1) by r^{2}, we obtain

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{2}
\end{equation*}
$$

where $a=r / c$ and $b=r$. If $a>b$, the major axis is horizontal; if $a<b$, the major axis is vertical. The center of the ellipse given by Equation (2) is the origin (Figure 1.62).

FIGURE 1.62 Graph of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, where the major axis is horizontal.

Substituting $x-h$ for x, and $y-k$ for y, in Equation (2) results in

$$
\begin{equation*}
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \tag{3}
\end{equation*}
$$

Equation (3) is the standard equation of an ellipse with center at (h, k). The geometric definition and properties of ellipses are reviewed in Section 10.1.

