Chapter 1 Practice Exercises

Inequalities

In Exercises 1-4, solve the inequalities and show the solution sets on the real line.

1. $7+2 x \geq 3$
2. $-3 x<10$
3. $\frac{1}{5}(x-1)<\frac{1}{4}(x-2)$
4. $\frac{x-3}{2} \geq-\frac{4+x}{3}$

Absolute Value

Solve the equations or inequalities in Exercises 5-8.
5. $|x+1|=7$
6. $|y-3|<4$
7. $\left|1-\frac{x}{2}\right|>\frac{3}{2}$
8. $\left|\frac{2 x+7}{3}\right| \leq 5$

Coordinates

9. A particle in the plane moved from $A(-2,5)$ to the y-axis in such a way that Δy equaled $3 \Delta x$. What were the particle's new coordinates?
10. a. Plot the points $A(8,1), B(2,10), C(-4,6), D(2,-3)$, and $E(14 / 3,6)$.
b. Find the slopes of the lines $A B, B C, C D, D A, C E$, and $B D$.
c. Do any four of the five points A, B, C, D, and E form a parallelogram?
d. Are any three of the five points collinear? How do you know?
e. Which of the lines determined by the five points pass through the origin?
11. Do the points $A(6,4), B(4,-3)$, and $C(-2,3)$ form an isosceles triangle? A right triangle? How do you know?
12. Find the coordinates of the point on the line $y=3 x+1$ that is equidistant from $(0,0)$ and $(-3,4)$.

Lines

In Exercises 13-24, write an equation for the specified line.
13. through $(1,-6)$ with slope 3
14. through $(-1,2)$ with slope $-1 / 2$
15. the vertical line through $(0,-3)$
16. through $(-3,6)$ and $(1,-2)$
17. the horizontal line through $(0,2)$
18. through $(3,3)$ and $(-2,5)$
19. with slope -3 and y-intercept 3
20. through $(3,1)$ and parallel to $2 x-y=-2$
21. through $(4,-12)$ and parallel to $4 x+3 y=12$
22. through $(-2,-3)$ and perpendicular to $3 x-5 y=1$
23. through $(-1,2)$ and perpendicular to $(1 / 2) x+(1 / 3) y=1$
24. with x-intercept 3 and y-intercept -5

Functions and Graphs

25. Express the area and circumference of a circle as functions of the circle's radius. Then express the area as a function of the circumference.
26. Express the radius of a sphere as a function of the sphere's surface area. Then express the surface area as a function of the volume.
27. A point P in the first quadrant lies on the parabola $y=x^{2}$. Express the coordinates of P as functions of the angle of inclination of the line joining P to the origin.
28. A hot-air balloon rising straight up from a level field is tracked by a range finder located 500 ft from the point of liftoff. Express the balloon's height as a function of the angle the line from the range finder to the balloon makes with the ground.

In Exercises 29-32, determine whether the graph of the function is symmetric about the y-axis, the origin, or neither.
29. $y=x^{1 / 5}$
30. $y=x^{2 / 5}$
31. $y=x^{2}-2 x-1$
32. $y=e^{-x^{2}}$

In Exercises 33-40, determine whether the function is even, odd, or neither.
33. $y=x^{2}+1 \quad$ 34. $y=x^{5}-x^{3}-x$
35. $y=1-\cos x$
36. $y=\sec x \tan x$
37. $y=\frac{x^{4}+1}{x^{3}-2 x}$
38. $y=1-\sin x$
39. $y=x+\cos x$
40. $y=\sqrt{x^{4}-1}$

In Exercises 41-50, find the (a) domain and (b) range.
41. $y=|x|-2$
42. $y=-2+\sqrt{1-x}$
43. $y=\sqrt{16-x^{2}}$
44. $y=3^{2-x}+1$
45. $y=2 e^{-x}-3$
46. $y=\tan (2 x-\pi)$
47. $y=2 \sin (3 x+\pi)-1$
48. $y=x^{2 / 5}$
49. $y=\ln (x-3)+1$
50. $y=-1+\sqrt[3]{2-x}$

Piecewise-Defined Functions

In Exercises 51 and 52, find the (a) domain and (b) range.
51. $y= \begin{cases}\sqrt{-x}, & -4 \leq x \leq 0 \\ \sqrt{x}, & 0<x \leq 4\end{cases}$
52. $y= \begin{cases}-x-2, & -2 \leq x \leq-1 \\ x, & -1<x \leq 1 \\ -x+2, & 1<x \leq 2\end{cases}$

In Exercises 53 and 54, write a piecewise formula for the function.
53.

54.

Composition of Functions

In Exercises 55 and 56, find
a. $(f \circ g)(-1)$.
b. $(g \circ f)(2)$.
c. $(f \circ f)(x)$.
d. $(g \circ g)(x)$.
55. $f(x)=\frac{1}{x}, \quad g(x)=\frac{1}{\sqrt{x+2}}$
56. $f(x)=2-x, \quad g(x)=\sqrt[3]{x+1}$

In Exercises 57 and 58, (a) write a formula for $f \circ g$ and $g \circ f$ and find the (b) domain and (c) range of each.
57. $f(x)=2-x^{2}, \quad g(x)=\sqrt{x+2}$
58. $f(x)=\sqrt{x}, \quad g(x)=\sqrt{1-x}$

Composition with absolute values In Exercises 59-64, graph f_{1} and f_{2} together. Then describe how applying the absolute value function before applying f_{1} affects the graph.

	$\boldsymbol{f}_{\mathbf{1}}(\boldsymbol{x})$
59. x	$\boldsymbol{f}_{\mathbf{2}}(\boldsymbol{x})=\boldsymbol{f}_{\mathbf{1}}(\|\boldsymbol{x}\|)$
60. x^{3}	$\|x\|$
61. x^{2}	$\|x\|^{3}$
62. $\frac{1}{x}$	$\frac{1}{\|x\|}$
63. \sqrt{x}	$\sqrt{\|x\|}$
64. $\sin x$	$\sin \|x\|$

60. $x^{3} \quad|x|^{3}$
61. $x^{2}|x|^{2}$
62. $\frac{1}{x} \quad \frac{1}{|x|}$
63. $\sqrt{x} \sqrt{|x|}$
64. $\sin x \quad \sin |x|$

Composition with absolute values In Exercises 65-68, graph g_{1} and g_{2} together. Then describe how taking absolute values after applying g_{1} affects the graph.

$g_{1}(x)$	$g_{2}(x)=\left\|g_{1}(x)\right\|$
65. x^{3}	$\left\|x^{3}\right\|$

66. $\sqrt{x} \quad|\sqrt{x}|$
67. $4-x^{2} \quad\left|4-x^{2}\right|$
68. $x^{2}+x \quad\left|x^{2}+x\right|$

Trigonometry

In Exercises 69-72, sketch the graph of the given function. What is the period of the function?
69. $y=\cos 2 x$
70. $y=\sin \frac{x}{2}$
71. $y=\sin \pi x$
72. $y=\cos \frac{\pi x}{2}$
73. Sketch the graph $y=2 \cos \left(x-\frac{\pi}{3}\right)$.
74. Sketch the graph $y=1+\sin \left(x+\frac{\pi}{4}\right)$.

In Exercises 75-78, $A B C$ is a right triangle with the right angle at C. The sides opposite angles A, B, and C are a, b, and c, respectively.
75. a. Find a and b if $c=2, B=\pi / 3$.
b. Find a and c if $b=2, B=\pi / 3$.
76. a. Express a in terms of A and c.
b. Express a in terms of A and b.
77. a. Express a in terms of B and b.
b. Express c in terms of A and a.
78. a. Express $\sin A$ in terms of a and c.
b. Express $\sin A$ in terms of b and c.
79. Height of a pole Two wires stretch from the top T of a vertical pole to points B and C on the ground, where C is 10 m closer to the base of the pole than is B. If wire $B T$ makes an angle of 35° with the horizontal and wire $C T$ makes an angle of 50° with the horizontal, how high is the pole?
80. Height of a weather balloon Observers at positions A and B 2 km apart simultaneously measure the angle of elevation of a weather balloon to be 40° and 70°, respectively. If the balloon is directly above a point on the line segment between A and B, find the height of the balloon.
T 81. a. Graph the function $f(x)=\sin x+\cos (x / 2)$.
b. What appears to be the period of this function?
c. Confirm your finding in part (b) algebraically.

T
82. a. Graph $f(x)=\sin (1 / x)$.
b. What are the domain and range of f ?
c. Is f periodic? Give reasons for your answer.

